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SUMMARY 

A three-dimensional extension of the QUICK scheme adapted for the finite volume method and 
non-uniform grids is presented to handle convection-diffusion problems for high Peclet numbers and steep 
gradients. The algorithm is based on three-dimensional quadratic interpolation functions in which the 
transverse curvature terms are maintained and the diagonal dominance of the coefficient matrix is preserved. 
All formulae are explicitly given in an appendix. Results obtained with the classical upwind (UDS), the 
simplified QUICK (transverse terms neglected) and the present full QUICK schemes are given for two 
benchmark problems, one two-dimensional, steady state and the other three-dimensional, unsteady state. 
Both QUICK schemes are shown to give superior solutions compared with the UDS in terms of accuracy 
and efficiency. The full QUICK scheme performs better than the simplified QUICK, giving even for coarse 
grids acceptable results closer to the analytical solutions, while the computational time is not affected much. 
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1. INTRODUCTION 

Computational techniques for the solution of fluid problems have reached a level of maturity 
which permits safe and accurate predictions. A major challenge in the development of a numerical 
model lies in the treatment of the convection terms. The application of the classical central 
difference scheme leads to instabilities wherever the convection mechanism dominates over 
diffusion (phenomena at large Paclet numbers).’.’ The use of the alternative upwind scheme,’ 
although it ensures stability for any value of the Peclet number, is burdened by its lack of 
accuracy, introducing an additional diffusion term commonly referred to as ‘numerical diffu- 
s ion’ .*~~ This problem may become extremely serious for unsteady, three-dimensional (3D) flows. 

With the aim to reduce numerical diffusion and at the same time to secure stability, Leonard’ 
developed a discretization scheme which uses quadratic interpolation functions (QUICK). Use 
of this scheme in a number of one- and two-dimensional problems, in conjunction with an 
explicit time intergration method, showed an improved behaviour. 

Several attempts followed in order to apply the QUICK scheme with an implicit time 
integration method.4-’ The implicit form of the QUICK scheme presents stability problems, 
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because under conditions of highly convective flows the coefficient matrix resulting from the 
finite difference equations may lose its diagonal dominance. Han et u I . , ~  in an effort to express 
exactly the convected face values of the dependent variable in the way suggested by Leonard,’ 
discovered that they could obtain converged solutions only upon the introduction of a 
pseudosource term in the equations. The type of pseudosources is entirely problem-dependent 
and no general formula can be derived for other cases. Han et aL4 tried a recasting of the 
relationships given by Leonard,2 which was effective only in the case of low Reynolds numbers. 

On the basis of these observations, Pollard and Siu’ realized that the stability problem was 
caused by the coefficients of the linear system of equations, which under certain conditions may 
assume negative values. They proceeded to a recasting of the finite difference equations in order 
to secure positive definite coefficients; this version of the QUICK scheme was named QUICKER. 
A different approach was used by Shyy,6 who introduced an appropriately normalized relaxation 
factor and obtained satisfactory results for a wide Peclet range. 

It should be noted that all the above efforts apply to one- and two-dimensional problems 
with uniform grids. They are also based on the simplified QUICK version, in which all transverse 
curvature terms in the expressions of the face values are eliminated. 

Freitas et ul.’ developed a three-dimensional QUICK version for non-uniform grids, in which 
the diagonal dominance of the coefficient matrix is preserved in the way suggested by Pollard 
and Siu.’ Their analysis, however, is based on one-dimensional interpolation functions, which 
corresponds to the elimination of the transverse curvature terms according to the simplified 
QUICK version. 

In the present work a new variant of the 3D QUICK scheme is developed for the general 
case of non-uniform grids. It uses 3D quadratic interpolation functions and can be easily 
incorporated in an explicit or implicit time intergration algorithm. Since implicit integration 
leads to the solution of a ‘linearized’ system of equations, a special procedure is adopted so that 
a convergent solution can be ensured. All formulae are explicitly given in the Appendix for 
completeness. 

Two benchmark problems are studied for the evaluation of different algorithms applied to 
highly convective flows. These benchmark problems combine characteristics that favour numer- 
ical diffusion, i.e. three-dimensionality and steep gradients. Their simple formulation permits 
comparison of numerical results and analytical solutions. A computer programme was developed 
and results for the upwind, simplified QUICK and full QUICK schemes are presented and 
compared. 

2. MATHEMATICAL FORMULATION 

2.1. Convection-diJiusion equation 

quantity cp written in Cartesian tensorial form can be stated as 
The general, unsteady, convection-diffusion equation describing the conservation of the scalar 

axj  a (  ax 

a 
- ( P C P )  +- p u j ~ -  
at 

where p is the density, uj  is the velocity vector having components u, u and w in the directions 
x 1  = x, xz = y and x3 = z respectively, r is the exchange coefficient and S is a source term. It 
can be shown’ that the momentum and continuity equations may be expressed in the above 
form, where for different cps the exchange coefficient r and the source term S take on different 
values. 



NUMERICAL DIFFUSION IN STRONG CONVECTIVE FLOWS 315 

2.2. Finite volume formulation 

Equation (1) is solved with the appropriate boundary conditions by first integrating it over 
a finite number of control volumes (Figure 1) for the time interval from nAt to ( n  + 1)At. Using 
the divergence theorem, the volume integral of the terms under the differential operator may be 
converted into surface integrals representing fluxes over the faces of each control volume 
according to 

where the A i s  represent the areas of the cell faces and Vp is the cell volume. The overbars in the 
terms on the left-hand side denote average values in the control volume, S* is a space-time- 
averaged source term and the other terms on the right-hand side represent time- and area- 
averaged values. 

Equation (2) represents the balance of fluxes over the typical control volume for node P and 
is an exact equation. The numerical problem becomes one of estimating the local space-time 
behaviour of cp in the vicinity of each control volume in order to evaluate the indicated average 
values. 

The time-averaged quantities are approximated by their values at time level (n + 1)At (fully 
implicit scheme). The standard practice is to approximate the diffusion terms using the central 
difference scheme, where a piecewise linear profile for the variation of cp is assumed. Hence the 
term representing the diffusion flux through the east face takes the form 

Figure I .  Typical control volume for node P. Capital letters denote neighbouring nodes while small letters denote volume 
faces. 
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where 
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The source term is assumed to be represented by the linear form 

s* = S" + S p q ,  ( 5 )  

for the general case where the source may depend on the actual value of cp. 
In this work attention is focused on the convection terms and the schemes that are used to 

approximate the convected face values of the dependent variable (i.e. qe for the east cell face). 
If the computational mesh were refined infinitely, one would expect to get the exact solution 

of the differential equation irrespective of the differencing scheme used to evaluate the convective 
fluxes. In practice one can only employ a finite number of cells and it is then important to ensure 
that the resulting discretized equations and their solution satisfy certain desirable properties 
such as conservativeness,12 convective stability,2 transportiveness'2 and boundedness.' 3*14 

The last property is generally associated with the condition of diagonal dominance of the 
coefficient matrix. If diagonal dominance holds, then qp is a weighted average of its neighbours 
and any non-physical overshoots or undershoots are avoided. However, this is only a sufficient 
condition for guaranteeing boundedness and in some cases perfectly acceptable results are 
obtained from schemes not satisfying this condition.' 

2.3. Upwind diferencing scheme ( U D S )  

The upwind differencing scheme (also known as the donor cell scheme) is based on the 
assumption that the convected cell face value is equal to that at the upstream cell along the 
same co-ordinate direction. This assumption leads to the following computational formula for qC: 

cpp ifu,  2 0, 
qE ifu,  < 0. 

This scheme is broadly used mainly because of its simplicity and excellent stability properties. 
It can be shown' that the resulting coefficient matrix satisfies the diagonal dominance criterion. 
It is also obvious that the transportive property is fully accounted for (no reference is made to 
downstream cells) and therefore convective stability is always ensured. However, stability is 
actually being achieved through the introduction (injection) of a stabilizing second-order 
diffusion term (false or numerical diffusion).' This term, which dominates physical diffusion 
under high-convection conditions, is responsible for many numerical inaccuracies. 

2.4. Quadratic upwind differencing scheme (QUICK)  

QUICK is a third-order, upwind-biased scheme which possesses the convective stability of 
the first-order UDS but is free of its second-order numerical diffusion errors. The development 
proceeds by first defining a general three-dimensional quadratic interpolating polynomial 
function locally in every control volume of the following form: 

(7) cp(L *7 i ) P  = k, + k2< + k3t2 + k4* + k,*' + k 6 1 +  k,C2, 

where (5 ,  $, [) is a local co-ordinate system attached to node P (Figure 1). 
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The seven coefficients ki are determined by the values of (P at the current control volume (P) 
and its six neighbours (W, E, S, N, L and H in Figure 1): 

k ,  = (PP. (8) 

The convected value of (P on the common surface between two consecutive control volumes 
is evaluated by integrating the interpolating function of the upstream control volume over this 
surface : 

(Pe = 

where QAE,, QBE,, etc. are appropriate geometric coefficients arising from the integration. 
These coefficients depend only on the geometry and are evaluated only once at the start of the 
calculations, Furthermore, because they are one-dimensional, they do not require a lot of 
computational space. Finally, they are always positive, which simplifies the sorting-out process 
in writing the final set of algebraic equations. The full set of equations is given in the Appendix. 

It should be noted that equation (7) does not contain ‘cross’-terms in ($, $( and 55, which 
represent ‘twist’ in the quadratic interpolating function. However, as pointed out by Leonard,” 
the ‘twist’ terms cancel out upon integration over the control volume and thus their contribution 
is zero. 
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In contrast with the simplified 2D and 3D versions presented in the literature so far, the 
procedure described above follows exactly the philosophy of the QUICK development. The 
simplified version of the QUICK scheme is based on one-dimensional interpolation functions. 
For example, for the x-direction, 

' P ( L  J / ,  O P  = k ,  + k 2 5  + k d 2 .  (17) 

This practice leads to the following expression for qe: 

It can be seen that in equation (18) all the transverse curvature terms QCp((ps - qP), 
Q D p ( q N  - qP), etc. were eliminated, which drastically simplifies both the handling of the final 
algebraic equations and their programming. This fact explains why all previous researchers have 
adopted the simplified QUICK version. In  Figure 2 the grid nodes involved in the calculation 
of the face values are shown for all three schemes. The number of grid nodes involved is seven 
for the UDS, 13 for the simplified QUICK and 25 for the full QUICK scheme. 

Upon substitution of equations (3), ( 5 )  and (16) in the finite volume equation (2), a system of 
algebraic equations is derived, the equation for node P being 

~ P ' P P  = ~ W ' P W  + ~ E C P E  + ~ S ' P S  + ~ N V N  + ~ L ' P L  + ~ H C P H  + be (19) 

QUICK 

Ls LL& 

Figure 2. Computational molecules for the three schemes 
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The form of the equations is suitable for the application of Stone's16 strongly implicit 
procedure (SIP). This algorithm was used in this work. The coefficients cli ( i  = W, E, S ,  N, L, 
H, P) and b are given in the Appendix. 

The QUICK scheme partially satisfies the transportive property because the downstream cells 
appear in equations (16). However, as Leonard' proved, it fully satisfies the convective stability 
criterion. The form of the coefficients a, shows that in strongly convective flows they can take 
negative values and the system of algebraic equations loses its diagonal dominance. This leads 
to 'overshoots' and 'undershoots' in high-Peclet-number problems (unbounded ~ o l u t i o n s ) . ~ * ' ~ ~ ' ~  
It also presents numerical stability problems whenever iterative algorithms (such as SIP) are 
used. This is why the full QUICK scheme has not been used at high Peclet numbers.' 

In the present work and in order to overcome the last-mentioned restriction, we keep only 
those terms which guarantee positive coefficients and relocate all others into the constant term 
b. With this modification the coefficient mE, for example, becomes 

(20) 

(21) 

c ~ E  = D, - Ce- - CiQSWp 

[CiQAWE - C:QBEp + QBp(C; - C,' + C; - Ch+)](qE - q p ) .  

and the contribution of this coefficient to the constant term b is 

The new pattern of the algebraic equations has a less implicit form, which results in a slower 
rate of convergence. However, this formulation aids in maintaining the iterative stability of the 
scheme. 

3. TEST CASES 

In this section two test cases are presented and the results of the UDS, simplified QUICK and 
full QUICK are compared. Both test cases concern the transport of a scalar quantity by 
convection and diffusion. The first one is a two-dimensional, steady state problem and the second 
is a three-dimensional, transient problem. 

3. I .  Two-dimensional, steady state problem 

The physical problem under investigation is shown schematically in Figure 3. The governing 
equation is the 2D, steady state analogue of equation (1). The velocities u and u and the exchange 
coefficient r have constant values. The scalar variable cp is zero on three side boundaries whereas 
it has an exponential distribution on the fourth, i.e. 

a t x  = 0,O I y I L, 
at x = L,O I y I L, i a t y  = 0,O I x I L, 

cp = 0 

cp = poePe@ sin(nx) at y = L, 0 I x I L. 
It can be shown that the analytical solution has the form" 

(23) cp = 'Po ePey/z sin(~x-(erly - er2~), 
e'l - er2 

where 

rl  , = fPe ,  fJmj, p = (471' + P e 3 4  (24) 
and Pe, = puL/T and Pe, = pvL/I' are the Peclet numbers in the x- and y-directions respectively. 
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Figure 3. Definition of the two-dimensional, steady state benchmark problem and its boundary conditions 

For the simulation presented here the following values have been used: L = 1, q, = 1, p = 1, 
r = 1, u = 1 and u = 10.5 (angle of 5.5"), giving rise to Peclet numbers Pe,  = 1 and Pe, = 10-5. 
The computational domain consists of 15 cells in each direction (NX = NY = 15). All solutions 
satisfy the convergence criterion 

where cp and cpa are the numerical and analytical solutions respectively. 
In Figure 4 the value of the relative error Icp - qal/qo along the y-direction for the location 

x = 0.5 is presented using the UDS and full QUICK scheme. The computational grid is uniform. 
The superiority of QUICK with respect to the UDS is evident as well as the large errors of 
numerical diffusion shown by the latter. The maximum values of the relative error are 12.5% 
and 5.6% for the UDS and QUICK respectively. 

Both schemes show large errors in the region where steep gradients of the cp-variable exist 
(large values of y).  This fact favours the use of a non-uniform grid (locally denser in the critical 
region). The following transformation' was used for the grid generation: 

with the parameter a = 1.1. Figure 5 depicts the new relative errors. An appreciable error 
reduction is noticeable, mainly with the QUICK scheme. The UDS errors, although reduced, 
are still large. The maximum values of the relative error are now 6.8% and 1% for the UDS 
and QUICK respectively. Thus the full QUICK scheme performs better for both uniform and 
non-uniform grids. The solution accuracy is remarkable with the QUICK scheme when we 
consider that it is achieved with relatively coarse grids. 
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Figure 5. Relative error along y at x = 0.5 using a non-uniform grid according to equation (26) for the two-dimensional 
benchmark problem of Figure 3 
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The differences between the full and simplified QUICK schemes are presented in Figure 6. 
The ratio of the relative errors of the two schemes shows the superiority of the full QUICK 
scheme, which reduces errors by as much as 9%. 

A decisive characteristic of every arithmetic model is the total central processing unit (CPU) 
time needed for the completion of the calculations. In order to have a better understanding 
about the time required with respect to the accuracy achieved, the total percentage error is used 
here defined by 

(Pp-(P x 100 N ,  
= I 'Po I )I 

where N is the total number of cells (NX x NY). CPU times and corresponding total errors E 

for various grid sizes are presented in Figures 7 and 8 respectively. Time is given on an 80286 
personal computer. Although the UDS appears to be faster for the same uniform grid size, its 
large errors make it finally uneconomical. The error with the UDS for a uniform grid of size 
19 x 19 is 1.53, whereas QUICK presents the same error for a grid size of only 7 x 7. The CPU 
times of the two schemes are 64.21 and 19.28 s respectively and therefore the UDS is 3.33 times 
more expensive than QUICK in order to produce the same accuracy. The slow rate of 
convergence of the UDS is evident (Figure 8), which in certain cases may give the false impression 
that a grid-independent solution has been reached. 

It is seen in Figure 7 that as the number of cells becomes larger, the difference in CPU time 
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Y 
Figure 6. Ratio of relative errors for the full and simplified QUICK schemes along y at x = 0.5 using a non-uniform 

grid for the two-dimensional benchmark problem of Figure 3. The discrepancies reach up to 9% 
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Uniform Mesh Size NX,NY 
Figure 7. Computation time versus mesh size for the three different schemes used in the two-dimensional benchmark 

problem of Figure 3 (CPU time given on a PC with an 80286 processor) 
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between QUICK and the UDS becomes even larger. This is due to the non-linear (second-order) 
dependence of CPU time on grid size ( N X  or N Y )  and because the UDS requires less 
computation for the same number of equations. The fact that not much extra CPU time is 
required between the simplified and full QUICK schemes is not suprising. The extra equations 
with the geometric coefficients arising from the integration are evaluated only once at  the 
beginning of the calculations, as mentioned earlier. Most of the CPU time is spent on the iterative 
solution of the system of equations. 

Finally, to check the performance of the two QUICK schemes, two other flow direction angles 
of 25" and 37" have been used (u = 4.5, u = 9.6 and u = 6.3, u = 8.4). The full QUICK scheme 
again gave better results, reaching about 10% less in error relative to the simplified scheme. 
This shows that the performance of the full QUICK scheme presented here is not much 
influenced by the angle of the flow direction. 

3.2. Three-dimensional, unsteady state problem 

The physical phenomenon under investigation is the transport of a scalar quantity cp (pullutant 
concentration) by convection and diffusion in a 3 D  flow field. Initially cp is zero throughout the 
flow field. At t = 0 a pollutant mass is released instantly in a small volume centred at (xo, yo,  zo) 
with dimensions L,, L, and L, as shown in Figure 9. In this volume cp is initially uniform and 
equal to cpo. The air entering the computational domain does not convey any pollutant mass. 
All the other boundary surfaces have zero-gradient pollutant concentration. The governing 
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Figure 9. Definition of the three-dimensional, unsteady state benchmark problem and its initial conditions 
( N X  = N Y  = N Z  = 13) 
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equation has the form of (1) with constant u, u, w, p and r. The analytical solution of the 
corresponding one-dimensional problem is given by Crank." The solution of the 3 D  problem 
is simply the product of the three one-dimensional solutions, i.e. 

where X ,  Y and 2 are the distances from the centre of the cloud defined by X = x - x, - ut, 
Y = y - yo - ut and Z = z - zo - wt.  The following non-dimensional quantities are used: 

concentration (4 = go/go,, (29) 

(30) 

(3 1) 

distance L, = ( I  - 1, - Vt)/Ax, 

time T = Vt/Ax, 

where I ,  = J(x$  + yg + z$), I = ,/(x2 + y2 + z2) and V = J(u2 + u2 + w'). 
Results have been obtained for a uniform grid of 13 cells in each direction with Ax = 

Ay = Az = 0.1 and an integration time step of At = 0.01. The initial pollutant mass covers 
3 x 3 x 3 cells in the computational domain (L, = 3Ax, L, = 3Ay, L, = 3Az) with x, = 7Ax, 
yo = 7Ay and zo = 7Az. The grids have been chosen intentionally coarse so as to better show 
discrepancies between the three schemes. The other parameters have values p0 = 1, p = 1 and 
V =  1.5 and the exchange coefficient r has values according to the grid Peclet number 
Pe,  = pVAx/T. 

Three cases have been studied, one with the flow velocity aligned with the computational grid 
(u = 1.5, u = w = 0), another where it forms an angle of 45" with the grid lines of the xy-plane 
(u = u = 41.5, w = 0) and another with an angle of 22.5" (u = 1.38, u = 0.57, w = 0). The results 
are presented in the form of concentration distribution with distance along the streamline passing 
through the centre of the cloud. Figures 10 and 1 1  show results for grid Peclet numbers of 100 
and 150 respectively, while Figures 12 and 13 shows results for Pe,  = 100. In all cases the time 
is set at T = 6. 

Errors of numerical diffusion are clearly obvious in all solutions with the three schemes. 
This is not surprising, however, taking into account that only 3 x 3 x 3 cells have been 
used to cover the pollutant mass. It is seen that the UDS performs worse than the QUICK 
schemes. Its poor performance is twofold: first, it provides an underestimation of the peak 
value of concentration (up to 55°/~-70%); second, it disperses concentration values outside the 
boundaries of the analytical solution. The latter results in non-zero values in positions 
where the concentration should have been zero. An increase in numerical diffusion exists 
in the case of a non-aligned flow (Figures 12 and 13). The combination of the two mechanisms 
generating numerical diffusion (truncation error and cross-flow d i f f~s ion)~  leads to unrealistic 
results. 

The QUICK scheme shows a better behaviour and the underestimation of the peak con- 
centration is of the order of 20%. The numerical diffusion in the case of a non-aligned flow 
is even smaller than for the corresponding UDS in parallel flow. This observation reveals 
that the main cause of numerical diffusion is the truncation error, which is less for QUICK 
than the U D S .  In the QUICK scheme, however, phase errors are present which do not exist in 
the UDS, since in the latter the low-wavelength harmonics are reduced because of numerical 
diffusion.20 
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, , , , , , , , , , , , ,  

- Analytical Solution : 

8 

-rl u 
rd 
H u 
$ z 
0 
U 

'-9 -7  -5 -3 - 1  1 3 5 

Distance L 
Figure 10. Comparison of results by different methods for the three-dimensional, unsteady state benchmark problem. 

Flow aligned with the grid; Pe, = 100, T = 6 
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Figure 1 I .  Comparison of results by different methods for the three-dimensional, unsteady state benchmark problem. 

Flow aligned with the grid; Pe, = 150, T = 6 
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Figure 12. Comparison of results by different methods for the three-dimensional, unsteady state benchmark problem. 

Flow at angle of 45" to the grid; Pe, = 100, T = 6 

Distance L 
Figure 13. Comparison of results by different methods for the three-dimensional, unsteady state benchmark problem. 

Flow at angle of 22.5" to the grid; Pe, = 100, T = 6 
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The differences between the full QUICK and simplified QUICK schemes, although not large, 
are evident for all flow directions studied. The underestimation of the peak concentration value 
in the simplified QUICK scheme is around 25%. It also gives larger errors at the points where 
the analytical solution has zero values. 

4. CONCLUSIONS 

Two different benchmark problems have been studied for the application of three different 
schemes in highly convective flows. The first test case concerns a two-dimensional, steady state 
problem, while the second concerns a three-dimensional, unsteady state problem. The general 
convection-diffusion equation has been solved numerically using the control volume approach. 
The three different schemes used to handle convection are the upwind, simplified QUICK and 
full QUICK discretization methods. For the two-dimensional case it is shown that for uniform 
grids the simplified QUICK scheme reduces the error by almost a half compared with the upwind 
scheme. Non-uniform grids further reduce the error, which is negligible for the QUICK scheme. 
The simplified QUICK scheme gives errors of up to 9% compared with the full QUICK scheme 
in approximating the analytical solution. The CPU time required using the full QUICK scheme 
is not much different than for the simplified QUICK scheme, while the accuracy is improved. 

The three-dimensional, unsteady state benchmark problem again shows the markedly superior 
performance of the QUICK scheme compared with the UDS. The full QUICK scheme gives a 
better approximation than its simplified version, especially for coarse grids, while the CPU time 
is not much affected. It is believed that the full QUICK scheme, equally applied to uniform and 
non-uniform grids in its 3D version, is more appropriate and should be used in further 
computations of highly convective flows. 
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APPENDIX: QUICK FORMULAE FOR CONVECTED FACE VALUES 

The equations used to approximate the convected face values of the dependent variable cp are 
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The geometric coefficients appearing in the equations above are defined by 

Ax; 
QAp = 3(Axp + AxW)(Axw + 2AxP + AxE) ’ 

Ax; QB - ~~~ ~ ______ P -  3(Axp + AxE)(AxW + 2Axp + AXE) ’ 

AY; 
Qcp = 3(Ayp + Ays)(Ays + 2Ayp + AyN)’ 

Az: 
QEP = 3 ( A ~ p  + AzL)(AzL + 2 A ~ p  + AzJ’ 

A$ 
QFp = 3 ( A ~ p  + AzH)(AzL + 2A2p + AzH) ’ 

AxpAx, QAE, = 
  AX^ + AXW)(AXW + 2Axp + AXE) ’ 

2 A x i  + AxpAx, 
QBE, = 

(Axp + AxE)(AxW + 2Axp + AXE) ’ 

2Axg + AxpAx, 
QAWp = ~ 

(AX, + Ax,)(AxW + 2Axp + AX,) ’ 
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AxpAxw 
QBWp = (AX, + AxE)(AxW + 2Axp + AXE) ’ 

‘YPAYN QCNp = 
(AyP + AYS)(AYS + 2AYP + AYN) ’ 

(47) 

AzpAzH QEHp = ~ 

(Azp + AzL)(AzL + 2Azp + AzH) ’ 

~ A z ;  + A z ~ A z L  
QFH, = 

(Azp + AzH)(AzL + 2 A ~ p  + AzH)’  

~ A z ;  + A z ~ A z H  
QELp = _____ 

( A z ~  + AzL)(AzL + 2 A ~ p  + Az,) ’ 

(53) 

(54) 
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